From the Twitter Stream to your Stats Screen:

Towards Working with Social Media Data for Official Statistics

H. Andrew Schwartz

0

International Conference and Global Working Group meeting on Big Data for Official Statistics 29 October, 2014, Beijing, China

...shedding light on psychosocial phenomena through big language analysis.

United Nations Statistics Division (UNSD) National Bureau of Statistics of China (NBS)

300mil. tweets/day

300mil. tweets/day

4bil. messages/day

300mil. tweets/day

4bil. messages/day

100mil. (Sina) weibos/day

300mil. tweets/day

4bil. messages/day

100mil. (Sina) weibos/day

BIGGER DATA

300mil. tweets/day

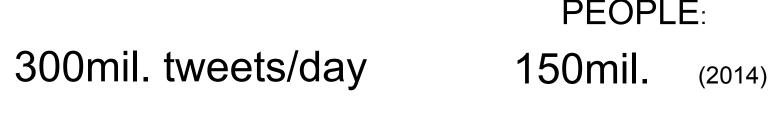
4bil. messages/day

100mil. (Sina) weibos/day

300mil. tweets/day 150mil. (2014)

PEOPLE:

- 4bil. messages/day 1bil. (2014)
- 100mil. (Sina) weibos/day 75mil. (2014)



4bil. messages/day 1bil. (2014)

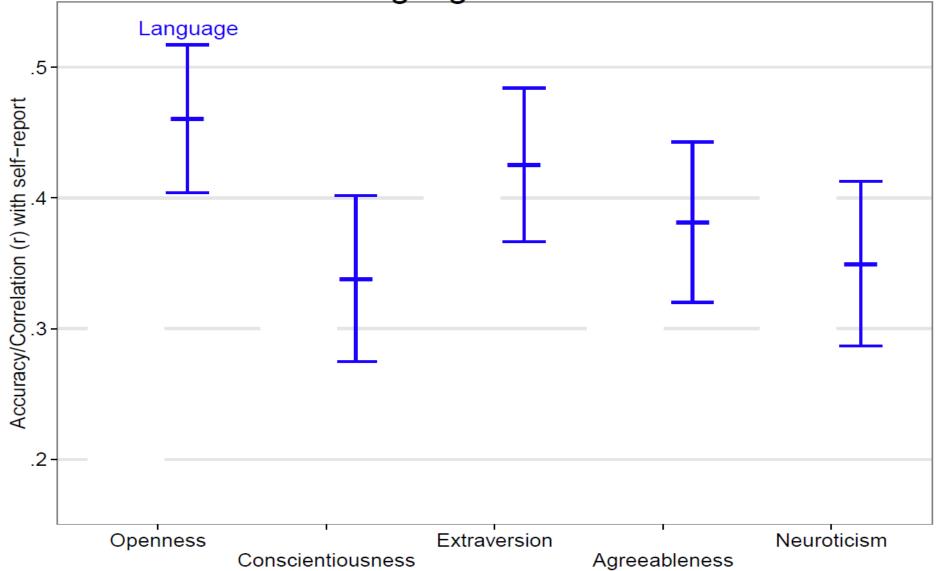
100mil. (Sina) weibos/day 75mil. (2014)

1. Measurement

1. Measurement *To what extent can we replace traditional survey-based methods?*

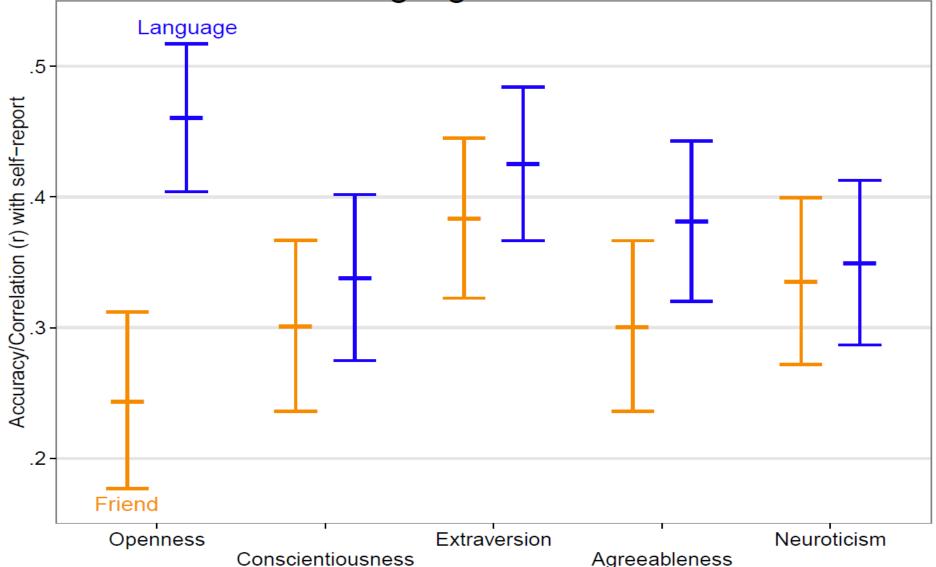
Measurement: Personality

Predicting Personality Traits: Language vs. Friends



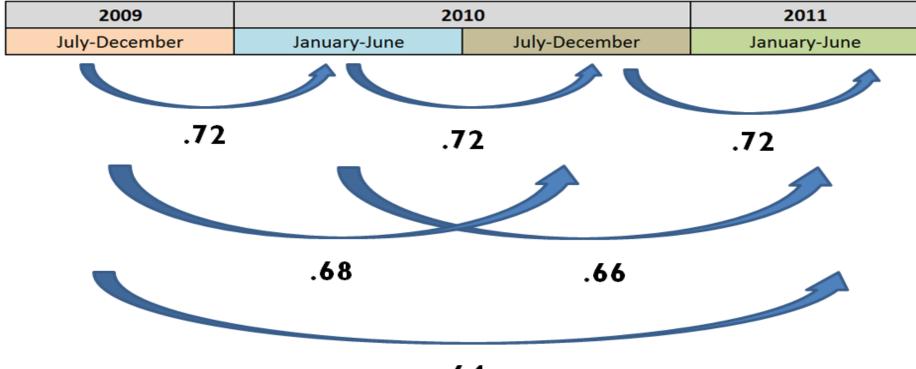
Measurement: Personality

Predicting Personality Traits: Language vs. Friends



Measurement: Personality

Test-Retest Reliability



^{.64}

Extraversion

1. Measurement *To what extent can we replace traditional survey-based methods?*

Measurement
 To what extent can we replace traditional survey-based methods? Data-driven discovery

Measurement
 To what extent can we replace traditional
 survey-based methods?
 Data-driven discovery
 Can we discovery new links with outcomes?
 What is driving a trend?

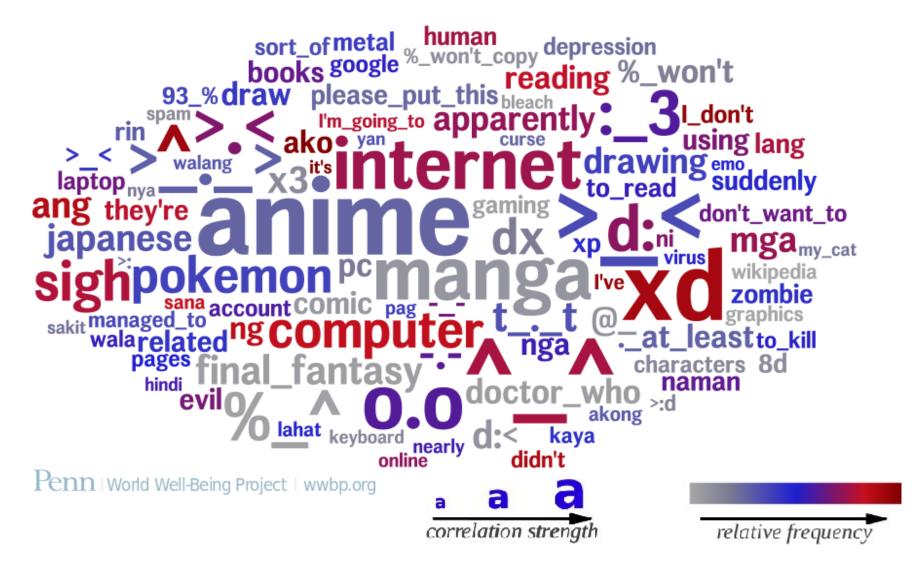
Applications

Data-driven Social Science: Extraversion

sociable, assertive, active, energetic, talkative, outgoing

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M. E. P., & Ungar, L. H. (2013). **Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach**. *In PLOS ONE 8(9)*.

Data-driven Social Science: Introversion



Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M. E. P., & Ungar, L. H. (2013). **Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach**. *In PLOS ONE 8(9)*.

moody, anxious, fearful, worry-prone, depressive

Explicit Language Warning

Neuroticism moody, anxious, fearful, worry-prone, depressive rubbish_{sort whilst} thinks shite proper crap^{sucks} sickness ugh hate twat **bloody** brilliant mate arsecos icky fee bleh fed mates crappy _ sick feels leave me scared annoyed fucked apparently > < feeling miserable worse mad freaking put_this_asmy_head shitty anxietyshit pissed grrrugh bored SICK fed_up hate stupid bitch Emotional stability >: frustrated annoying DISSECIA: grr grrrr >:(care Crap vollevball frustrating freakin play game tournament soccer boys girls varsity feelina soccer basketball practice team won depressed pissed X as_your_status for_once hates angry extremely slightly crying nightmare softball learn playing games frustrated today woooooo why_do_lbloody irritated tired confused start great thang stressed grumpy hell stupid:_3 ^{alas}day psalm team bout_to san_diego fullest toes **Xd**alone romantic waves won't Worse dead feelingsad feel annoyed florida virg '^{sea} sano SOCCEF life_is_good surfing. holla CII great_weekend celtics surf water sunset terrible empty loneliness ready the lord scream horrible hopeless lonely sun beach bitch^{pisses} wtf piss surrounded miserable volleyball kno cali lakel bullshit fuck asshole rejected depressed beaches we_come proverbs SUCCESSworkout unwanted helpless shitfucking fucked pissed pissing beautiful<u>!</u>day_{doin}hasketball **goddamn** shitty god's god is _good wonderful lord blessed praise miami giving thankful game_tonighta_blast gift blessing bless finals here_we_come camping snowboarding beach niggas planned forward blessingsgod on_my_way home_sweet_home blessed everyday exciting parties begin readyplans grateful thanking church in_christ ekends lots fun time catching family weekend spending spent hanging reunion visiting groat partying filled wonderful great friends weekend h b

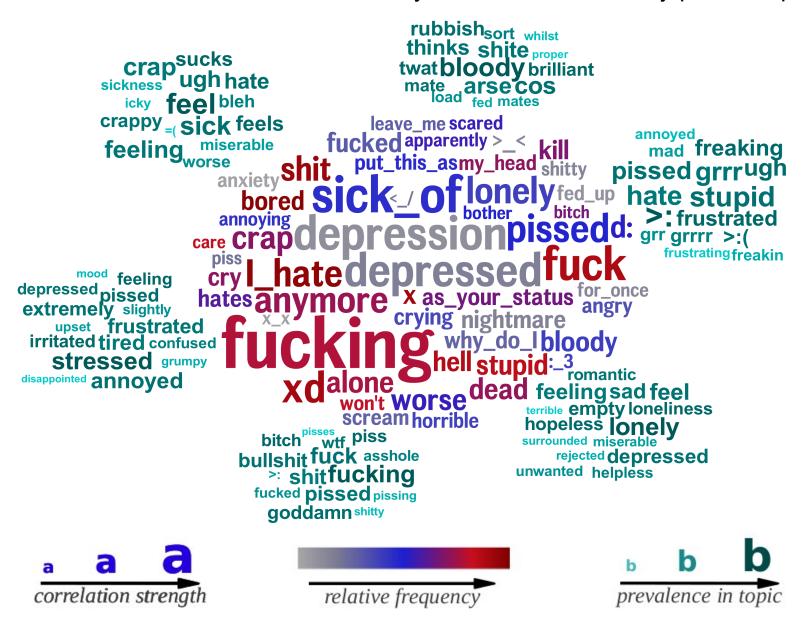
upset

correlation strength

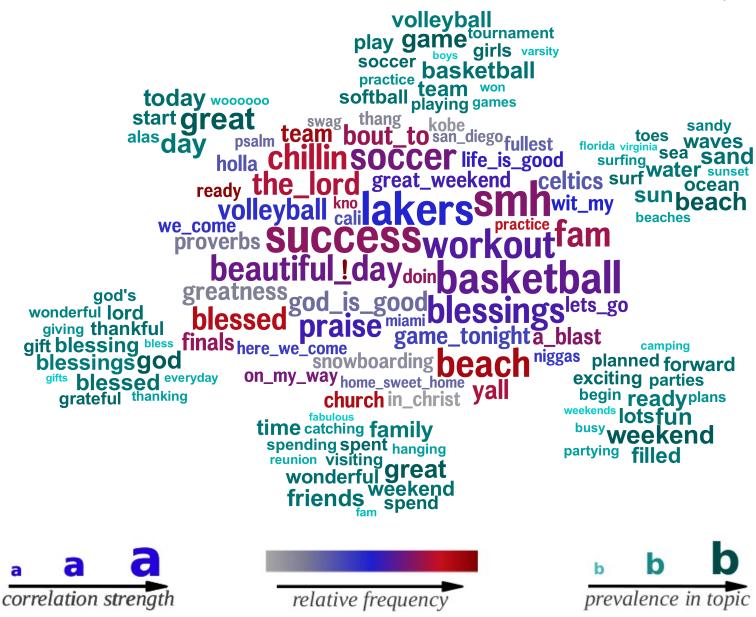
relative frequency

prevalence in topic

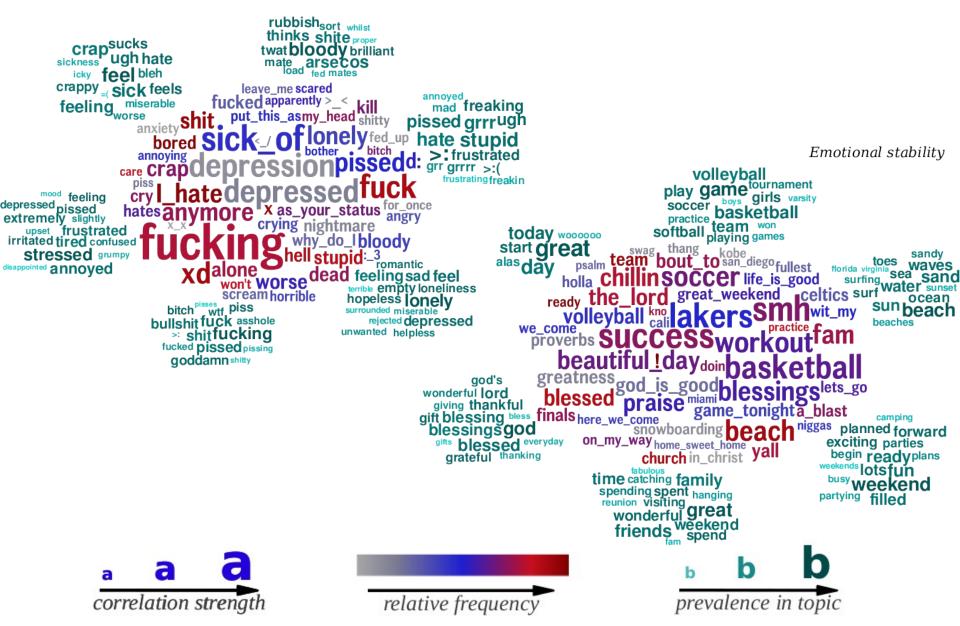
Neuroticism moody, anxious, fearful, worry-prone, depressive



Emotional stability

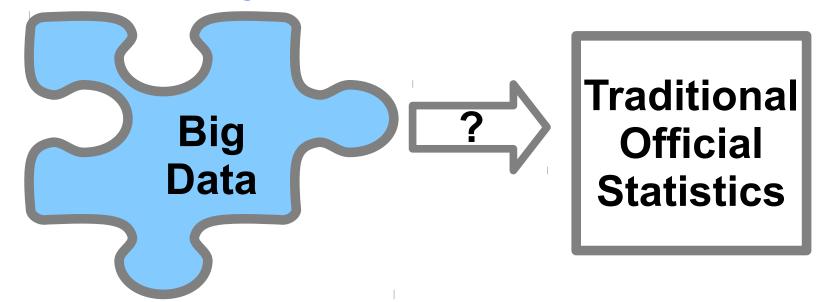


Neuroticism

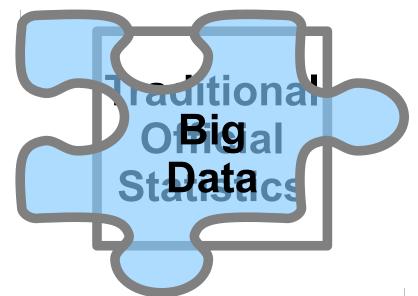


Measurement
 To what extent can we replace traditional
 survey-based methods?
 Data-driven discovery
 Can we discovery new links with outcomes?
 What is driving a trend?

Measurement
 To what extent can we replace traditional
 survey-based methods?
 Data-driven discovery
 Can we discovery new links with outcomes?
 What is driving a trend?



Measurement
 To what extent can we replace traditional
 survey-based methods?
 Data-driven discovery
 Can we discovery new links with outcomes?
 What is driving a trend?



Overview

- Introduction
- Background on Social Media Data
- Examples
- Challenges
- Summary

Overview

- Introduction
- Background on Social Media Data
 - Sources
 - Types
 - Acquisition
 - Analysis Methodology
- Examples
- Challenges
- Summary

microblogging social interaction messaging

mostly public

somewhat private

private

microblogging	social interaction	messaging
Twitter Weibo	Facebook Renren	Text Messages SnapChat WeChat
mostly public	somewhat private	private

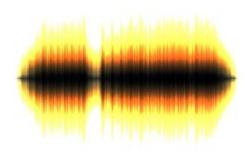
microblogging	social interaction	messaging
Twitter Weibo	Facebook Renren	Text Messages SnapChat WeChat
mostly public	somewhat private	private
big	bigger	biggest

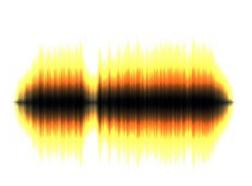
microblogging	social interaction	messaging
Twitter Weibo	Facebook Renren	Text Messages SnapChat WeChat
mostly public	somewhat private	private
big	bigger	biggest
Other social n Instagram YouTube Yelp Pinterest Tumblr Reddit	<u>nedia</u>	

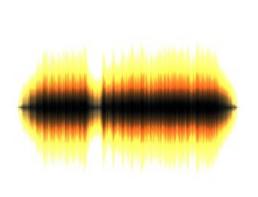
microblogging	social interaction	messaging
Twitter Weibo	Facebook Renren	Text Messages SnapChat WeChat
mostly public	somewhat private	private
big	bigger	biggest
		Saarah

Other social media

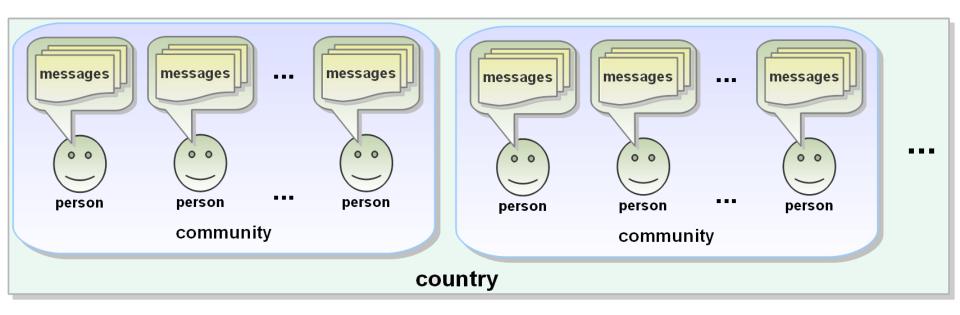
Instagram YouTube Yelp Pinterest Tumblr Reddit <u>Search</u> Google Yahoo Baidu Bing

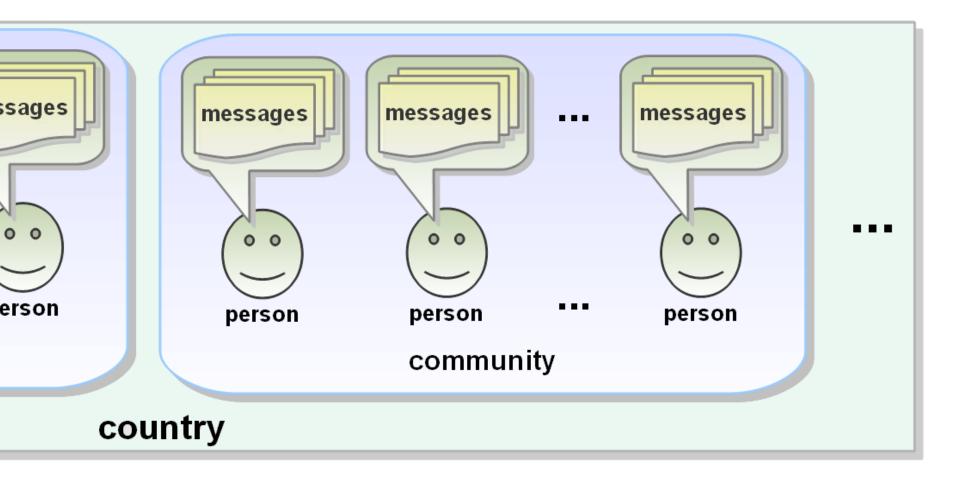




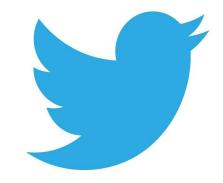


Levels of Analysis





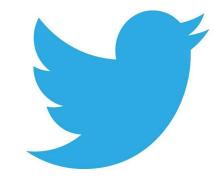
Acquiring Social Media



Twitter

- Application Programming Interfaces (APIs)
 - random stream (1% daily = \sim 2 to 3.5m)
 - filter stream (1%; not random sample)
 - search API (180 queries per 15 minutes)

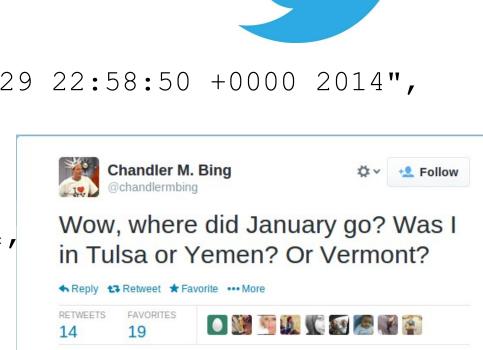
Acquiring Social Media



Twitter

- Application Programming Interfaces (APIs)
 - random stream (1% daily = \sim 2 to 3.5m)
 - filter stream (1%; not random sample)
 - search API (180 queries per 15 minutes)
- More data provided by third parties (Datasift, Gnip, ...)

Acquiring Social Media JSON encoding



"coordinates": None,

- "created at": "Wed Jan 29 22:58:50 +0000 2014",
- "favorite count": 19,
- "favorited": False,
- "geo": None,
- "id": 428663556889145344,
- "lang": "en",
- "place": None,
- "retweet count": 14, "retweeted": False,

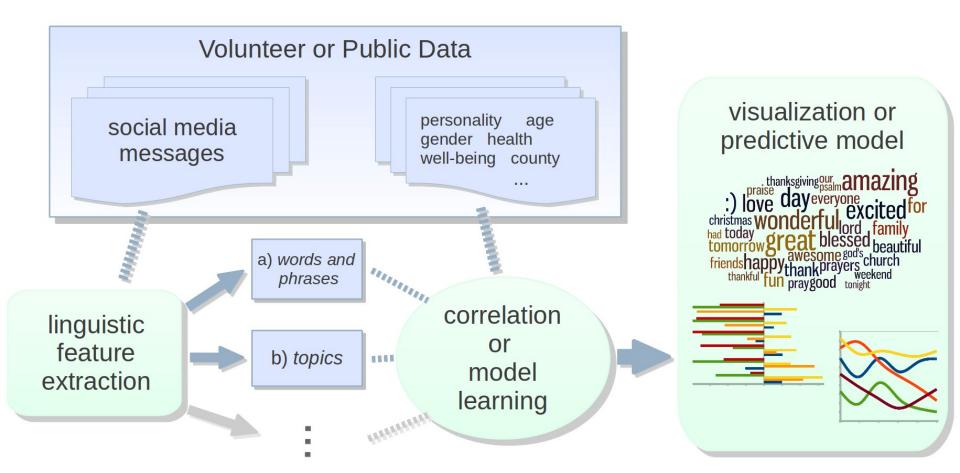
"text": "Wow, where did January go? Was I in Tulsa or Yemen? Or Vermont?",

2:58 PM - 29 Jan 2014

Acquiring Social Media

Facebook

- Graph API
- Limited public data
- Consent participants to share private data through Facebook App.



Features

- **words and phrases:** 1 to 3 word sequences more likely to occur together than chance.
- Words identified from text via social-media aware *tokenization.*
- usually restricted to those used more than a few times
- e.g. 'day', 'the beautiful day', 'Mexico City', etc...

Features

words and phrases: 1 to 3 word sequences more likely to occur together than chance.

- Words identified from text via social-media aware *tokenization.*
- usually restricted to those used more than a few times
- e.g. 'day', 'the beautiful day', 'Mexico City', etc...

topics: Clusters of semantically-related words found via

latent Dirichlet allocation

e.g. laughing funniest Imao funny telling joke laughs clown joking jokeshahaha laugh cracking hilarious specially missing dearest miss bestestmiss besties family dearly ove y'all friends ya'll guys visit eachother

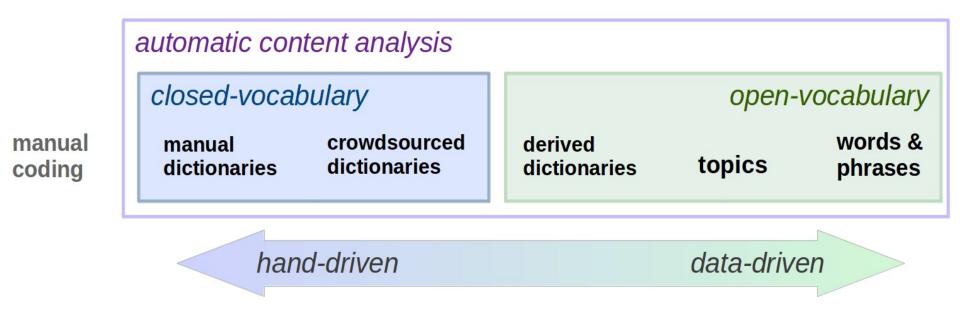
Method:Data-driven language analysis

Features

words and phrases: 1 to 3 word sequences more likely to occur together than chance.

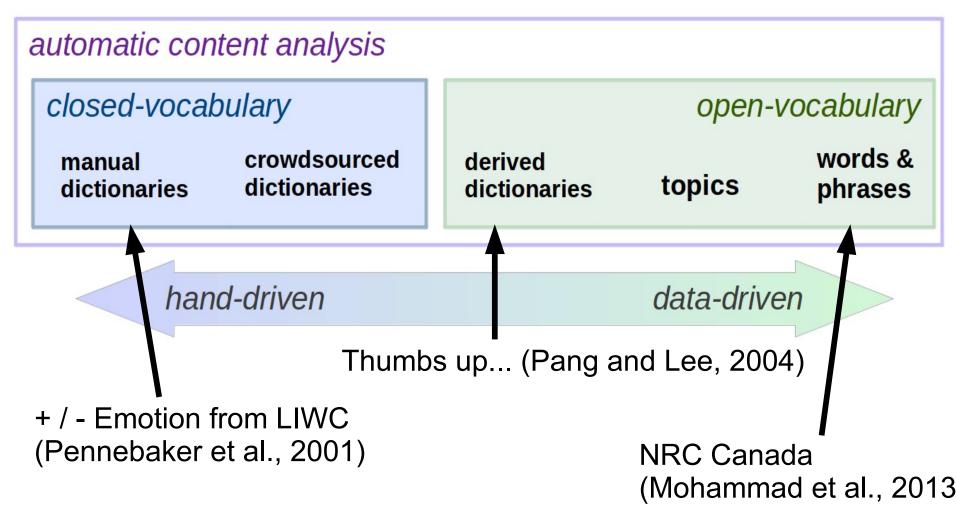
topics: Clusters of semantically-related words found via latent Dirichlet allocation

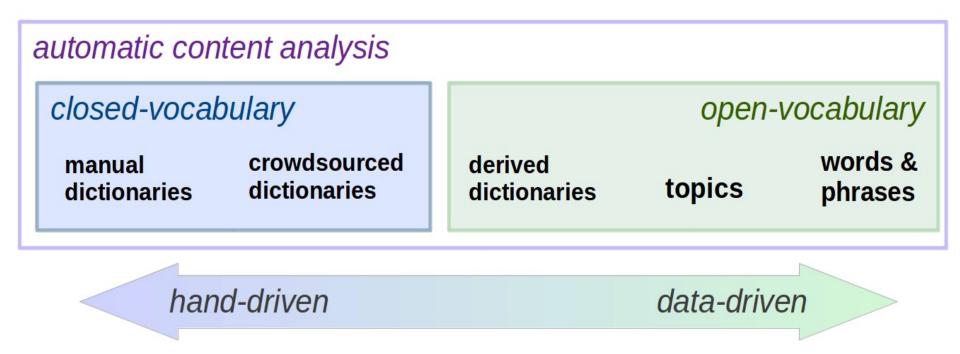
lexica: Manually-created clusters of words
 e.g. positive emotion: happy, joyous, like, etc...
 negative emotion: sad, hate, terrible, etc...



open-vocabulary : Not restricted to predefined lists of features.

Example: Sentiment Analysis





All require validation in new domain. (e.g., new platform, time-frame, or level of analysis)

Prediction

How to fit a single model on lots of language variables? (e.g. 25,000 words and phrases)

Methods from Machine Learning:

- discrete outcomes: *support vector machines* (SVM)
- continuous outcomes: *ridge regression*

Prediction

Issues with words as variables:

- sparseness: most words do not occur very often
- high co-variance: e.g. people that say "soccer" often are also more likely to say "goal"

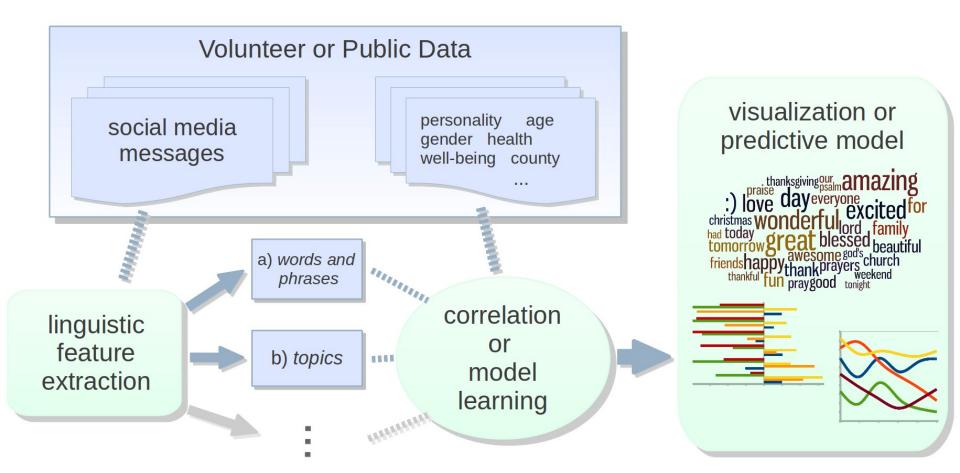
Prediction

Issues with words as variables:

- sparseness: most words do not occur very often
- high co-variance: e.g. people that say "statistics" often are also more likely to say "variable"

Solutions:

- L1 penalized fit (lasso regression)
- Use principal components analysis before fit



Some Available Resources

MALLET: Machine Learning Language Toolkit Good for topic modeling http://mallet.cs.umass.edu/ GUI: http://code.google.com/p/topic-modeling-tool/

Lightside: Point and Click Machine Learning http://ankara.lti.cs.cmu.edu/side/download.html

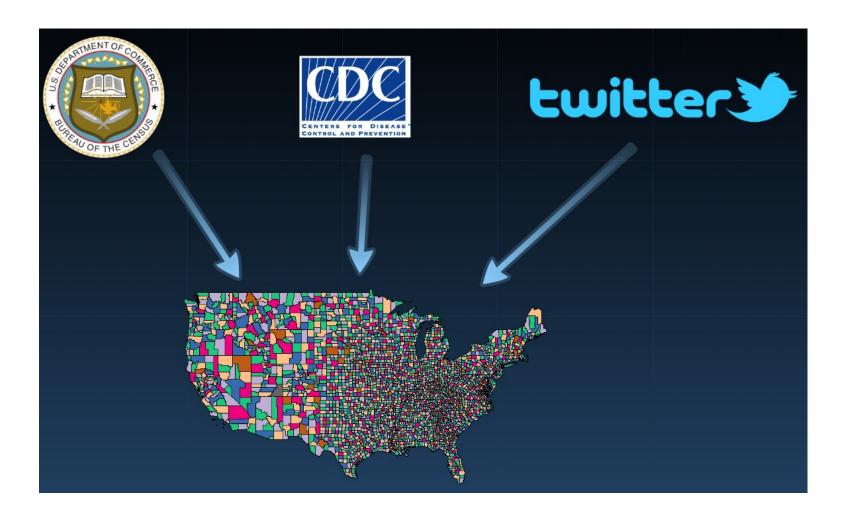
WWBP Resources wwbp.org/data.html Coming this January: "LexHub: Language Analysis X social science" email to get on list: hansens@seas.upenn.edu

Overview

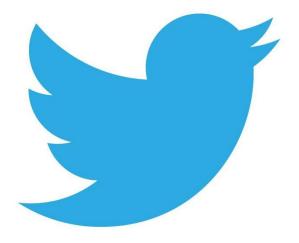
- Introduction
- Background on Social Media Data
 - Sources
 - Types
 - Acquisition
 - Analysis Methodology
- Examples
- Challenges
- Summary

Overview

- Introduction
- Background on Social Media Data
- Examples
 - Heart Disease Mortality
 - HIV Prevalence
 - Life Satisfaction
 - Flu Tracking
- Challenges
- Summary



Eichstaedt, Schwartz, Park, Kern, ... Ungar, Seligman. (2014; in press)

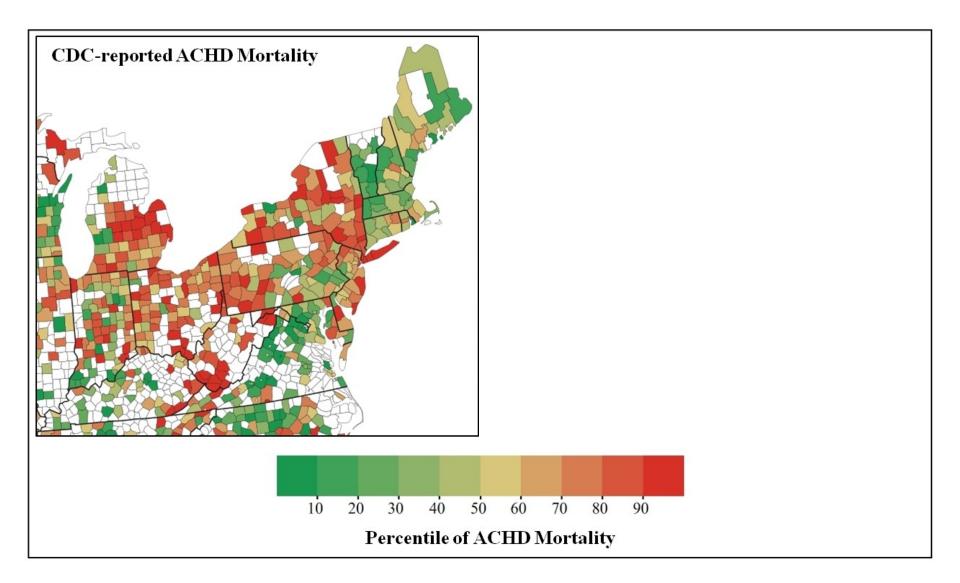


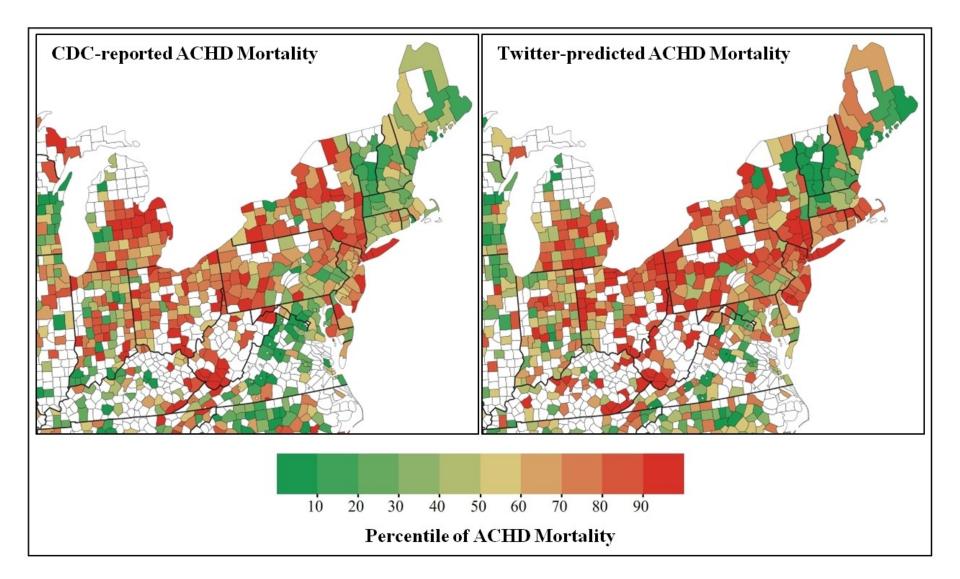
Twitter Dataset Studied:

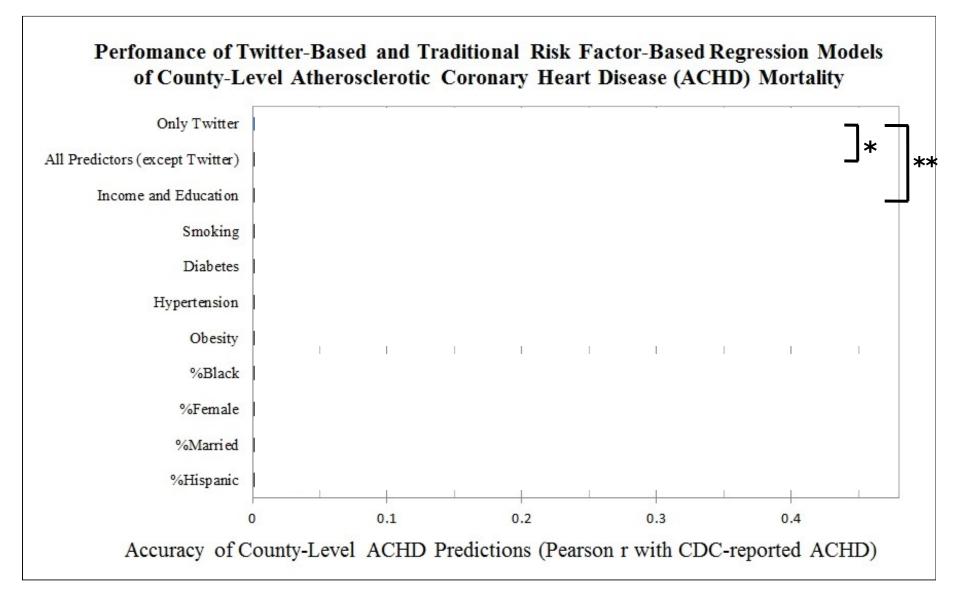
10% of tweets from June 2009 to March 2010 (826 million tweets)

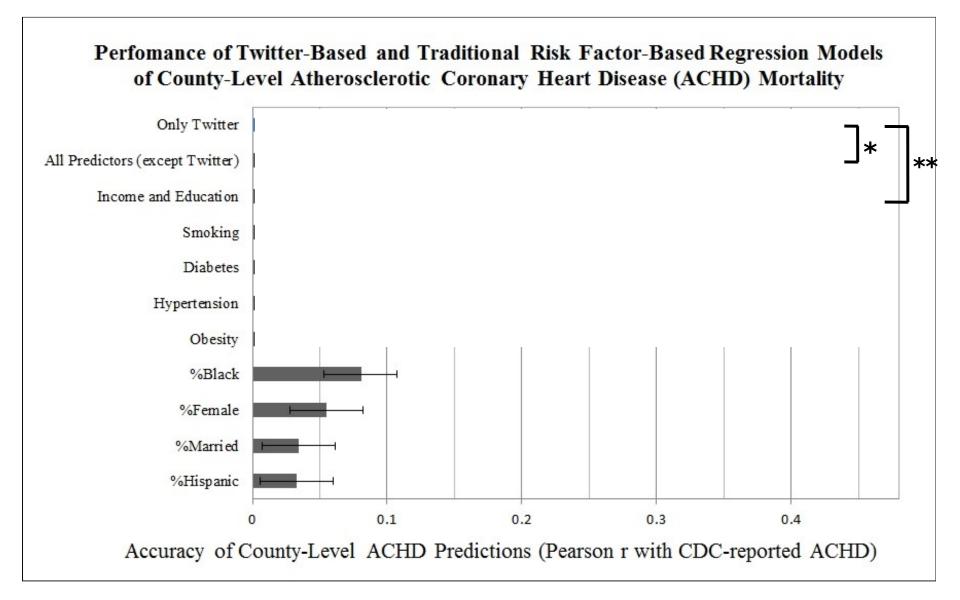
United States CDC data:

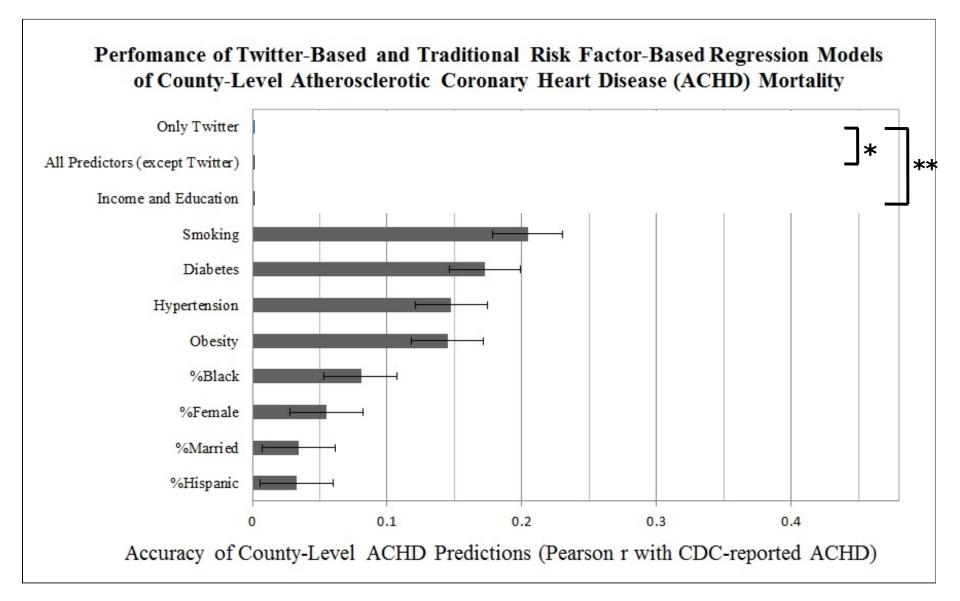
2009-2011 Atherosclerotic Heart Disease Mortality

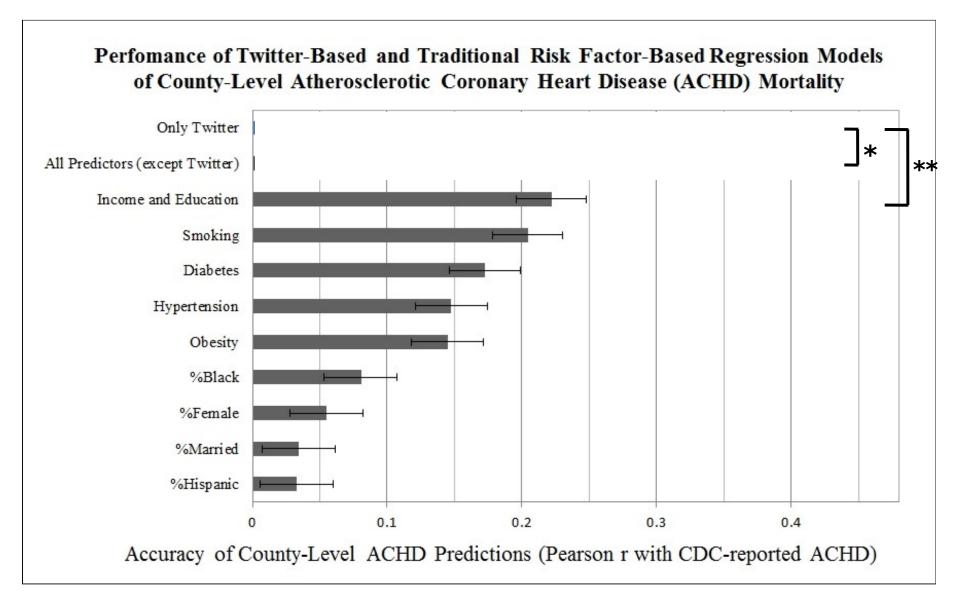


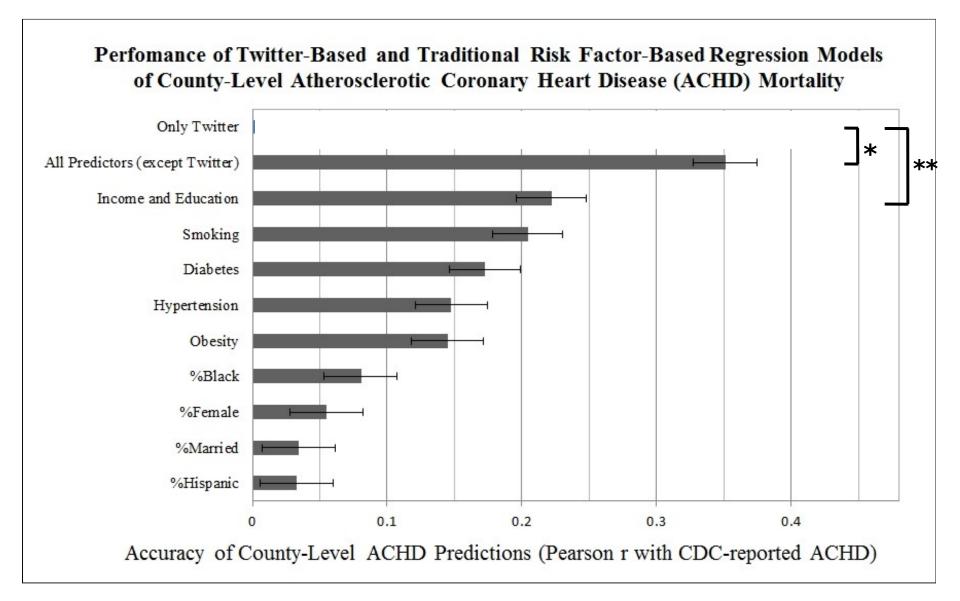


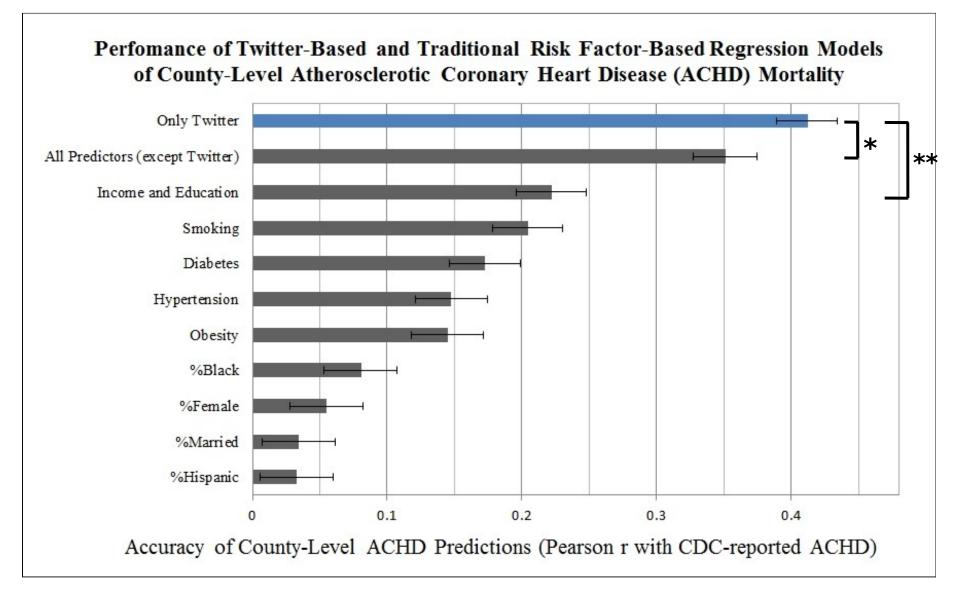












Language **positively** correlated with US-county-level Heart Disease

Anger, Hostility, Aggression

RR=1.43 to RR=1.74

Negative Relationships

RR=1.37 to RR=1.53

Disengagement

RR=1.43 to *RR*=1.49

Language **negatively** correlated with US-county-level Heart Disease

Higher Status Occupations

RR = .70 to RR = .75

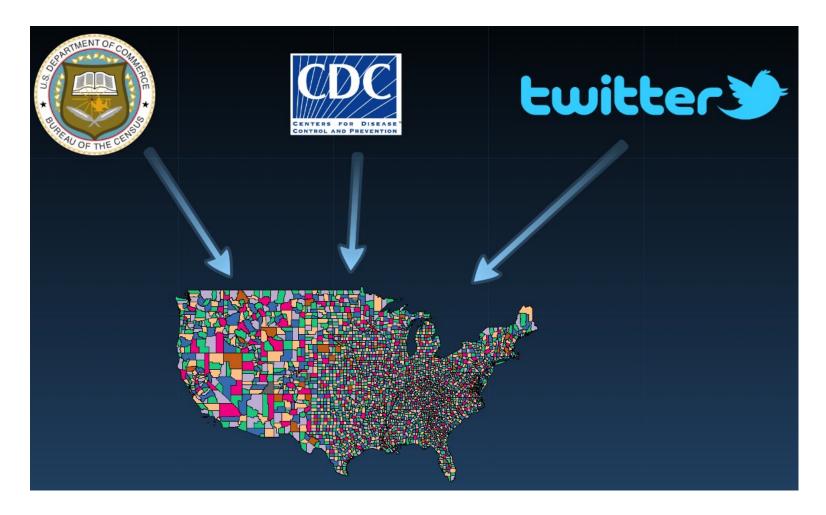
Positive Emotions, Engagement

RR=.73 to *RR*=.76

Optimism

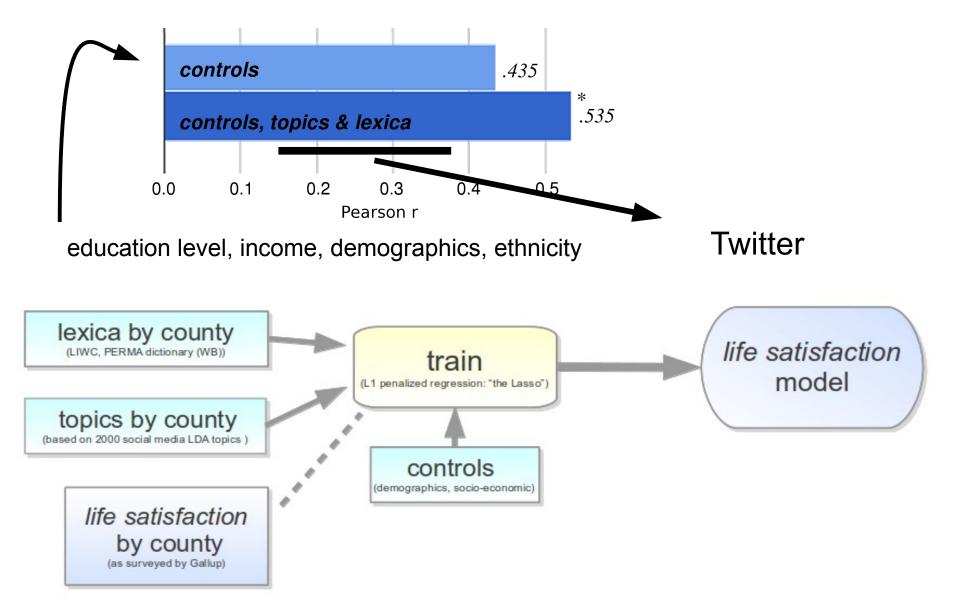
RR=.76 to *RR*=.78

Example: County Life Satisfaction

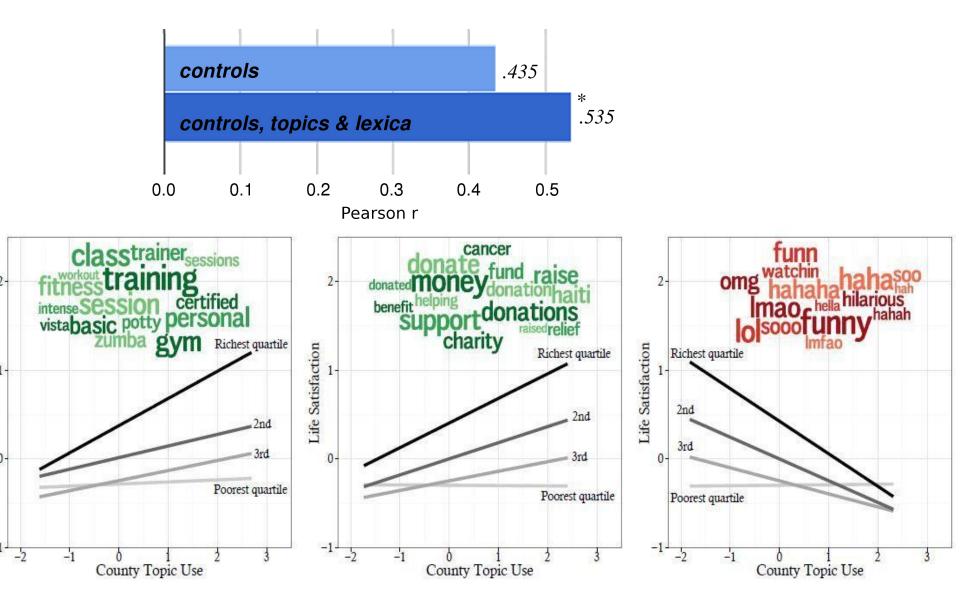


In collaboration with Molly Ireland and Dolores Albaraccin

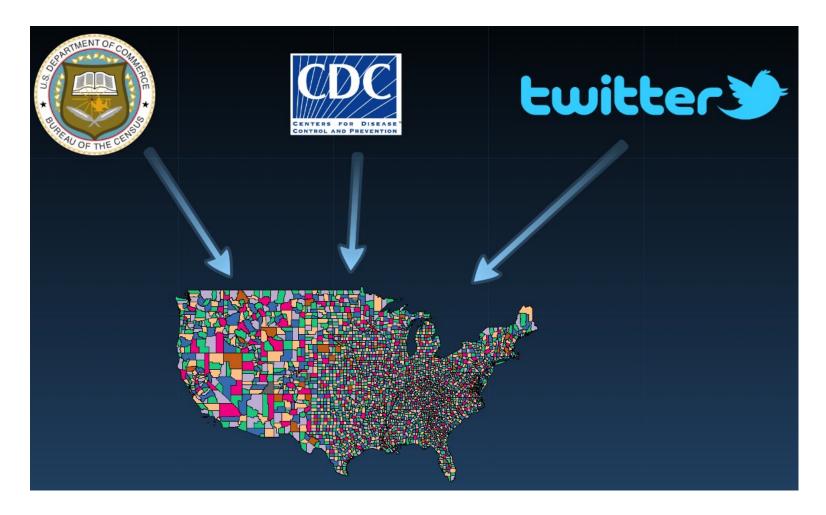
Example: County Life Satisfaction



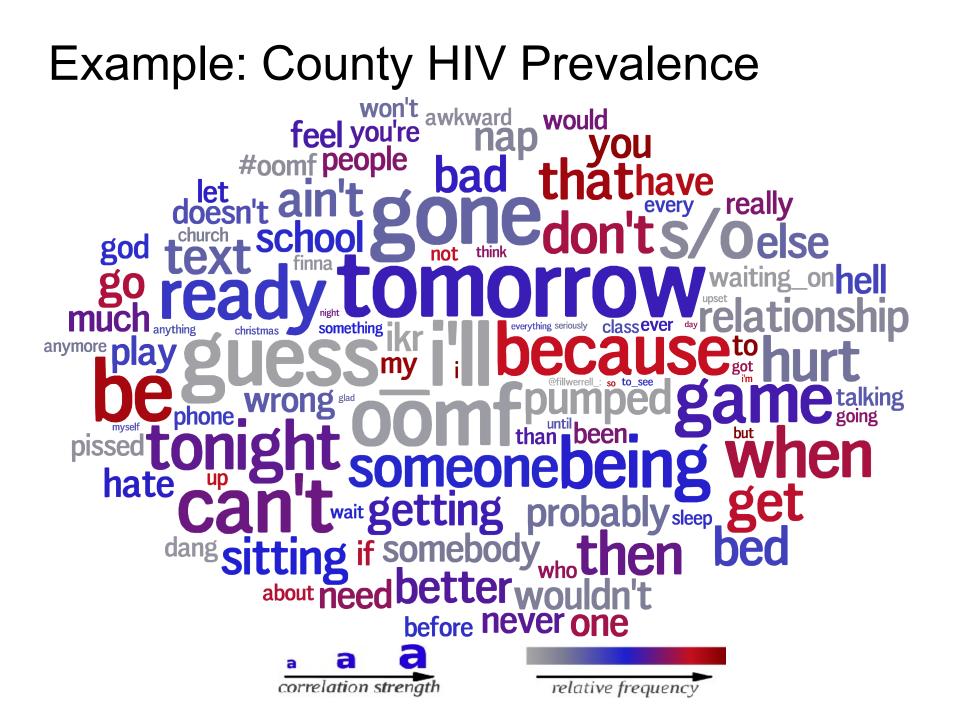
Example: County Life Satisfaction



Example: County HIV Prevalence



In collaboration with Molly Ireland and Dolores Albaraccin



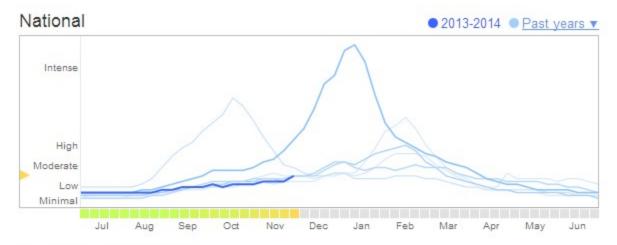
Example: County HIV Prevalence

HIV prevalence is higher in counties with less future tense in...

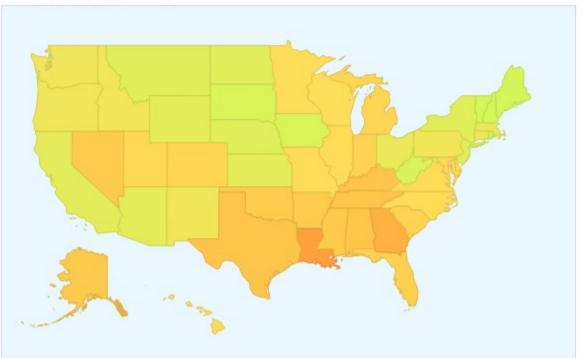
all 1375 qualifying counties (*Beta* = -0.48, *p* <.001)

top 200 most populated counties (*Beta* = -0.27, *p* <.001)

Example: Flu Trends



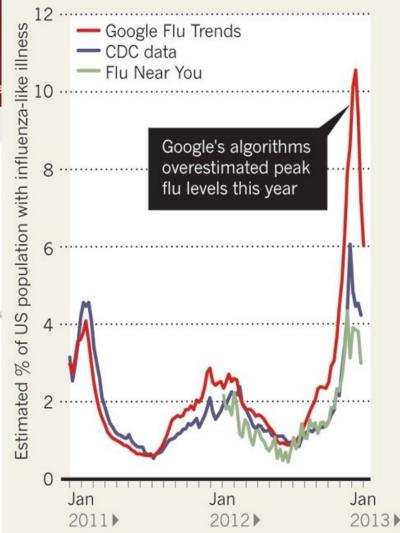
States | Cities (Experimental)



Google Flu Trends

FEVER PEAKS

A comparison of three different methods of measuring the proportion of the US population with an influenza-like illness.



Health Tweets

http://www.healthtweets.org/ (Mark Dredze and Michael Paul; Johns Hopkins University)

narrows in on health-related tweets

Overview

- Introduction
- Background on Social Media Data
- Examples
 - Heart Disease Mortality
 - HIV Prevalence
 - Life Satisfaction
 - Flu Tracking
- Challenges
- Summary

Overview

- Introduction
- Background on Social Media Data
- Examples
- Challenges
- Summary

Ethical / Privacy

Technical

Methodological

Log in Sign up

Kashmir Hill Forbes Staff H 6/28/2014 @ 2:00PM 181,181 views

Facebook Manipulated 689,003 Users' Emotions For Science

+ Comment Now + Follow Comments

- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical

Methodological

- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical
 - Data Storage and Analysis
 Infrastructure
 - Evolving APIs
- Methodological

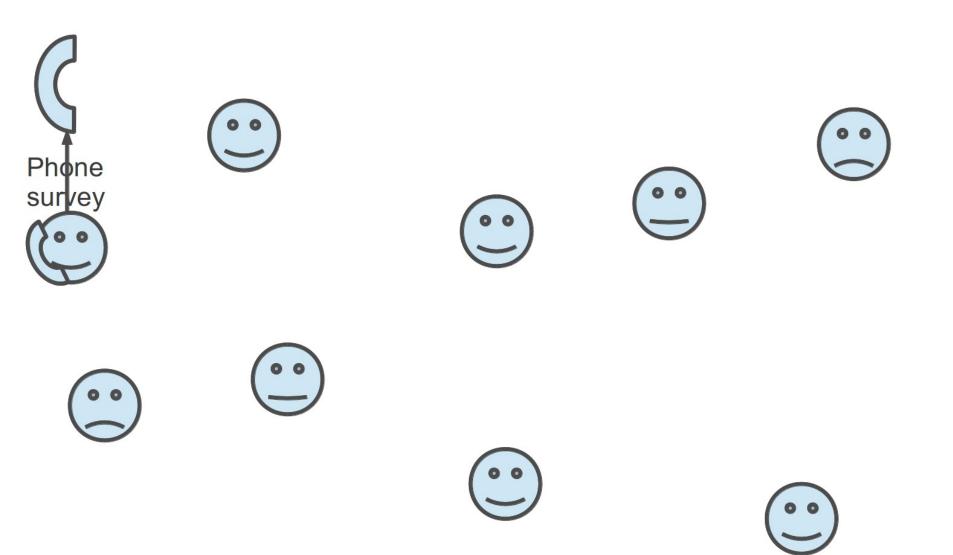
- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical
 - Data Storage and Analysis Infrastructure
 - Evolving APIs
- Methodological
 - Word meaning / domains
 - Correlation versus Causation
 - Sample Bias
 - Self-presentation Bias

Issues attributed to missclassification Facebook status update.

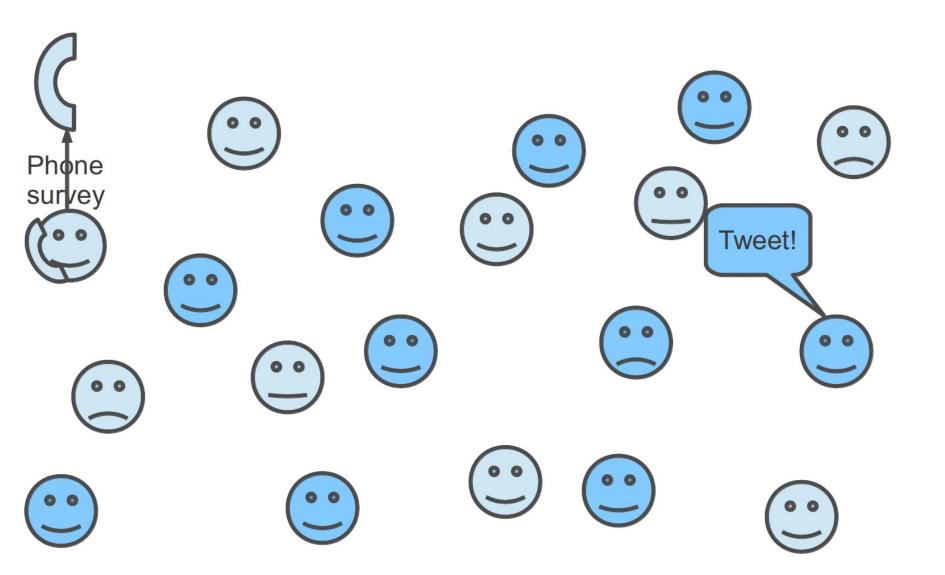
category	label	frequency
Lexical Ambiguity	Wrong POS	15
	Wrong WS	38
Signal Negation	Strict Negation	16
	Desiring	6
Other	Stem Issue	5
	Other	24

- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical
 - Data Storage and Analysis Infrastructure
 - Evolving APIs
- Methodological
 - Word meaning / domains
 - Correlation versus Causation
 - Sample Bias
 - Self-presentation Bias

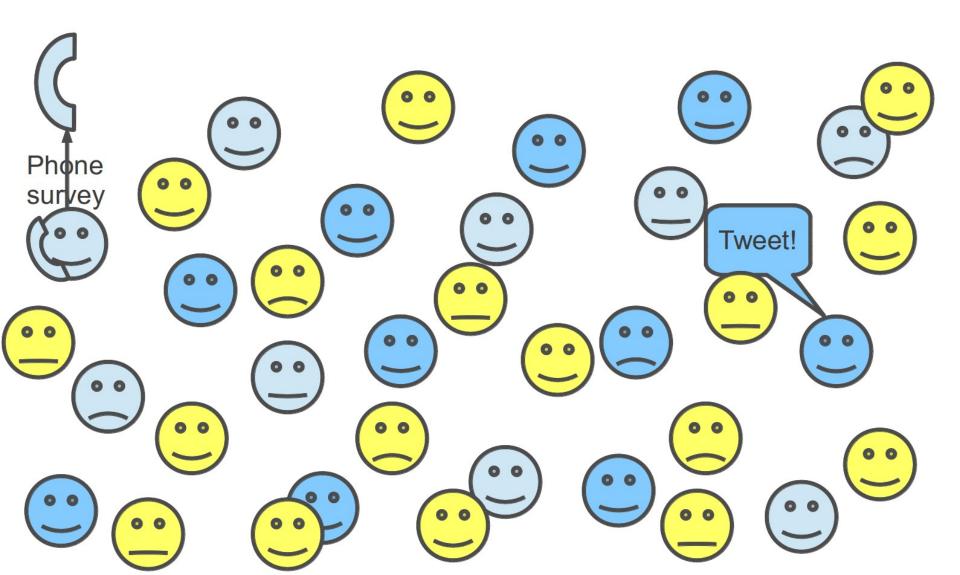
Predicting based on a different sample

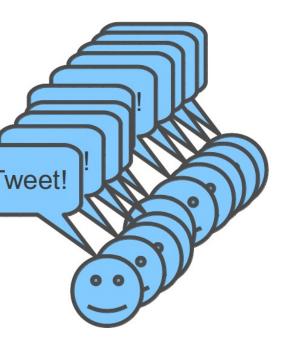


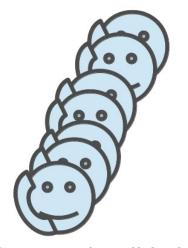
Predicting based on a different sample



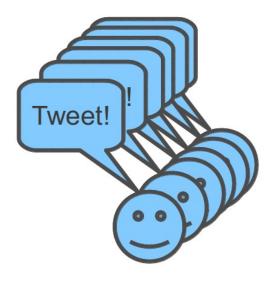
Predicting based on a different sample



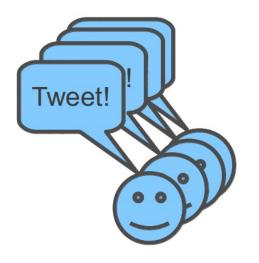


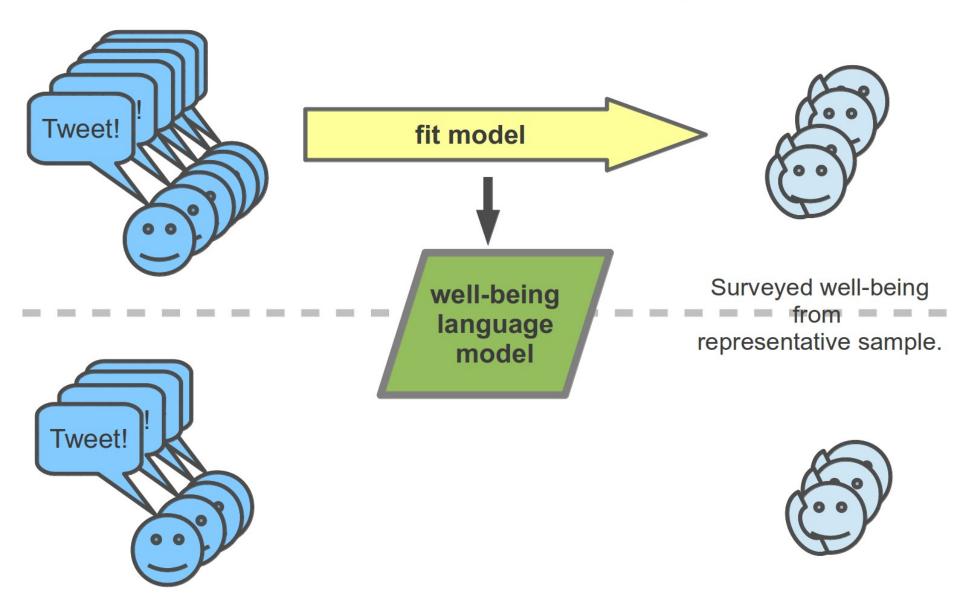


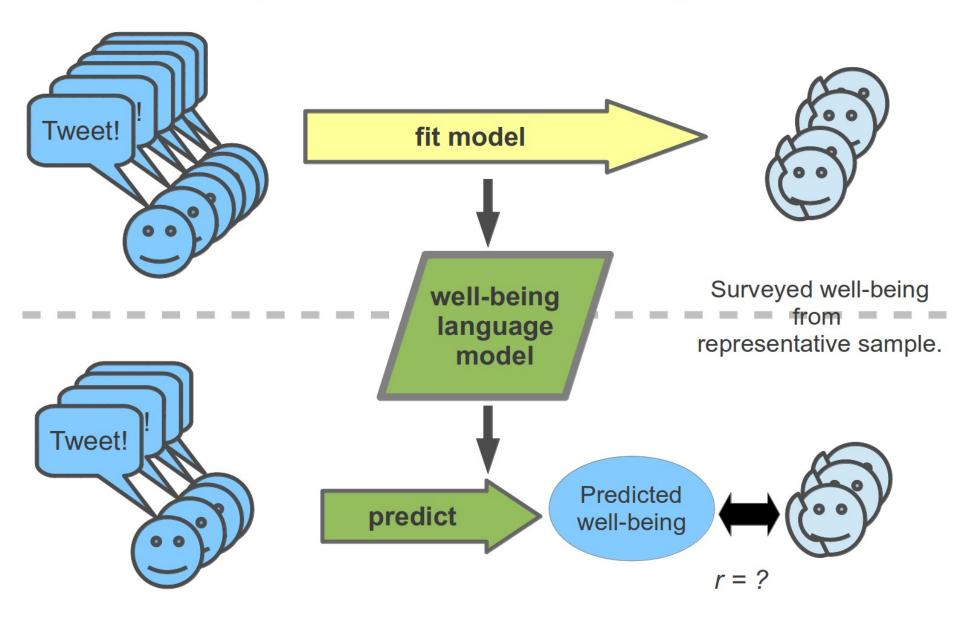
Surveyed well-being from representative sample.



Surveyed well-being from sample.







- Alternaitve: Post-stratification
 - Demographics are one of the most accurately predicted from language
 - gender 92% accuracy
 - age 0.86 correlation

- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical
 - Data Storage and Analysis Infrastructure
 - Evolving APIs
- Methodological
 - Word meaning / domains
 - Correlation versus Causation
 - Sample Bias
 - Self-presentation Bias

- Ethical / Privacy
 - Public Awareness / Participant Consent
- Technical
 - Data Storage and Analysis Infrastructure
 - Evolving APIs
- Methodological
 - Word meaning / domains
 - Correlation versus Causation
 - Sample Bias
 - Self-presentation Bias

writing size

sample size / populations

(Gosling 2004; 2010)

self-descriptive variables

Why Social Media and Language?

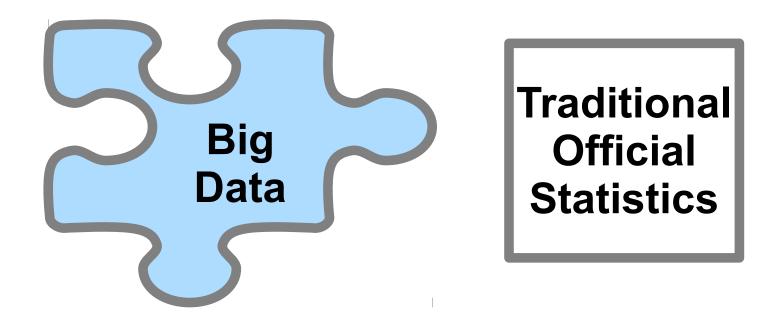
unobtrusive

longitudinal / look back in time

often personal / everyday concerns

potential for real-time

hansens@seas.upenn.edu



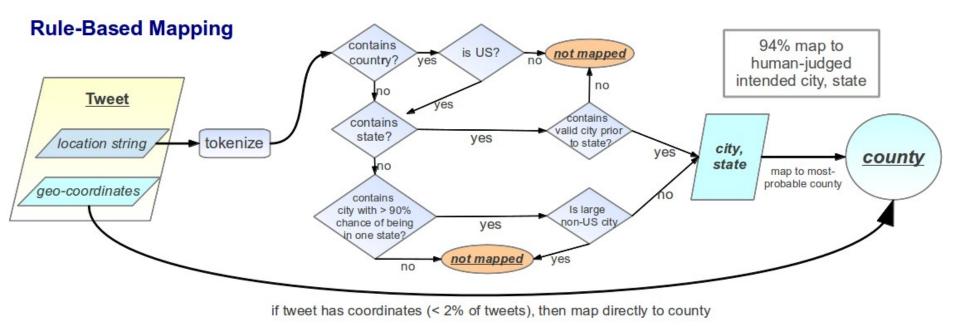
Penn World Well-Being Project wwbp.org

hansens@seas.upenn.edu

Penn World Well-Being Project wwbp.org

APPENDIX

Method: County-Mapping

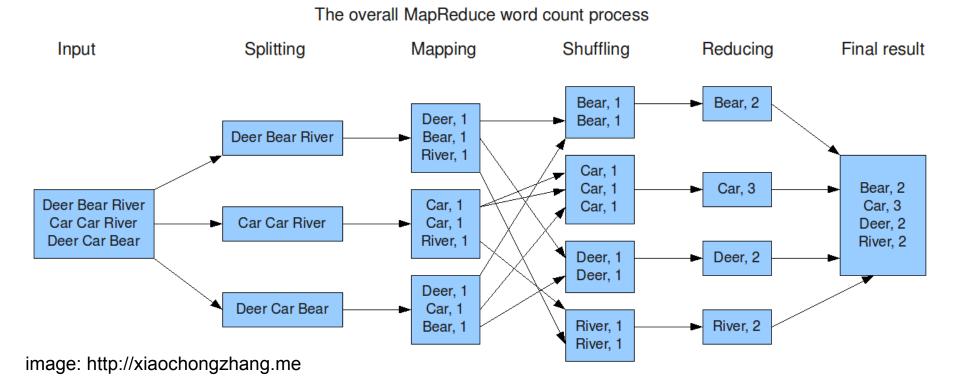


94% accurate map to human-judged intended city, state pair.

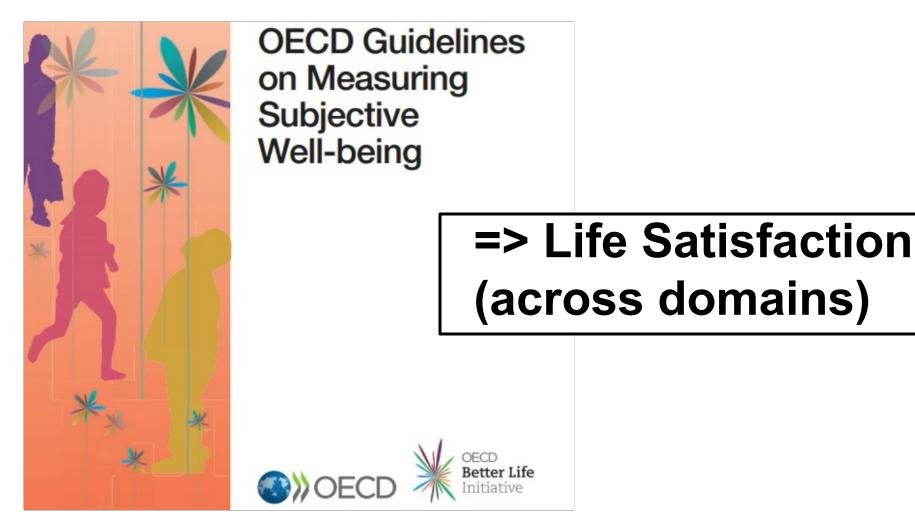
Distributed Computing

• approximately 1 billion tweets

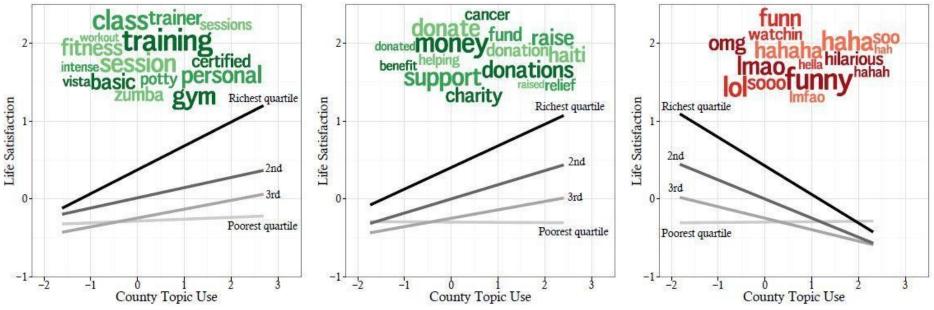
- Too much for single computer system
- Utilize map-reduce in a "Hadoop" style cluster:



Well-Being and Policy



What topics matter for all counties (that we have data for) in the United



Evidence for moderation

- A moderator alters the strength or direction of a relationship
- Question of external validity how universal is the effect?

Daivd Kenny – Moderator Variables: Introduction,

http://davidakenny.net/cm/moderation.htm What topics matter for the poorest 25% of counties in

Individual Well-Being

tonight tomorrow excited wooohooo super pumped stoked soooo upcoming psyched bummed

thankful truely wonderful boyfriend helped amazing grateful familyluckyblessed^{daughter} friends^{loving supportive} husband research skills education^{analysis} education^{analysis} engineering engineering development information design technology marketing process

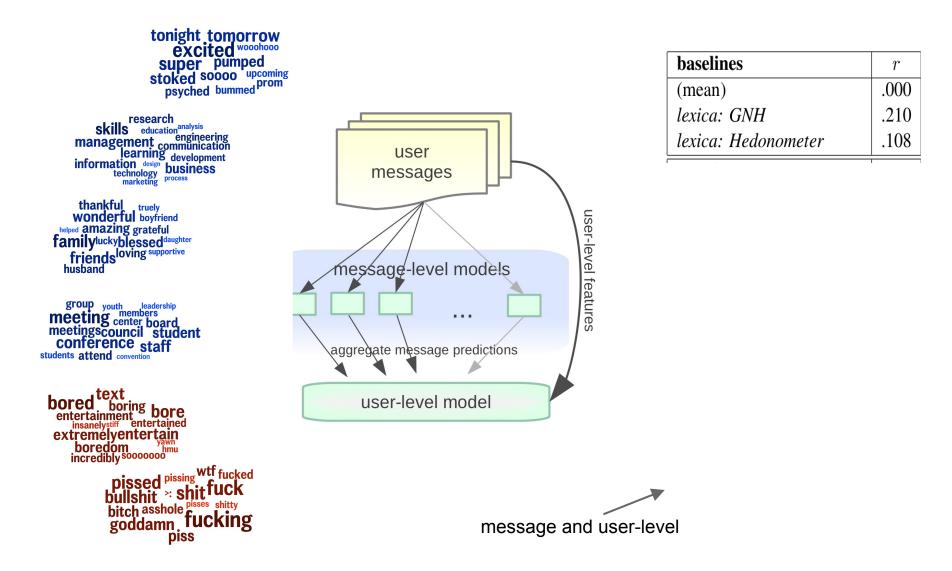
group youth leadership meeting center board meetingscouncil student conference staff students attend convention

pissed pissing wtf fucked bullshit >: shitfuck bitch asshole pisses shitty goddamn fucking piss

bored boring bore entertainment bore insanelystiff entertained extremelyentertain boredom hmu incredibly soooooo

satisfaction with life

Individual Well-Being: message to user-level



	Correlations between Personality Ratings							
	Self-Language	Self-Friend	Friend-Language					
N =	5,000	745	745					
Openness	.43	.25	.30					
Conscientiousness	.37	.30	.20					
Extraversion	.42	.39	.24					
Agreeableness	.34	.30	.24					
Neuroticism	.35	.34	.20					

	Criterion measures		Extraversion			
Criterion			Qx	Language		
Number	of friends	711	.23	.22		
Number	of doctor visits	736	.05	.10		
Number	of sick days	733	01	.03 .03 .10		
Politically	liberal	756	.07			
Fair-mind	edness	864	.24			
Self-disclo	sure	864	.15	.14		
Self-monit	toring	927	.36	.15		
Satisfactio	n with life	1114	.24	.13		
Barratt In	npulsiveness Scale	549				
Attent	on		08	01		
Cognit	ive Instability		02	.00		
Motor			.30	.15		
Persev	erance		01	.05		
Self Co	ontrol		.00	.06		
Cognit	ive Complexity		.05	.09		

Criterion measures	N	Openness		Conscientiousness		Extraversion		Agreeableness		Neuroticism	
		Qx	Language	Qx	Language	Qx	Language	Qx	Language	Qx	Language
Number of friends	711	.05	05	01	15	.23	.22	.04	.03	13	09
Number of doctor visits	736	.00	01	05	.12	.05	.10	.02	.03	.14	.08
Number of sick days	733	.01	.07	07	01	01	.03	02	.02	.22	.11
Politically liberal	756	.32	.22	13	14	.07	.03	01	19	.05	.08
Fair-mindedness	864	.17	.03	.33	.23	.24	.10	.28	.17	35	19
Self-disclosure	864	02	07	.37	.29	.15	.14	.37	.28	28	16
Self-monitoring	927	.18	.08	03	09	.36	.15	03	01	10	05
Satisfaction with life	1114	.05	03	.29	.19	.24	.13	.24	.21	45	19
Barratt Impulsiveness Scale	549										
Attention		08	.03	42	15	08	01	18	17	.31	.13
Cognitive Instability		.24	.14	22	18	02	.00	15	17	.16	.09
Motor		.09	03	17	02	.30	.15	.06	07	04	02
Perseverance		.01	.00	.00	.01	01	.05	11	02	.09	04
Self Control		04	.04	47	12	.00	.06	09	10	.24	.07
Cognitive Complexity		03	04	23	03	.05	.09	01	07	.10	.05
Column-vector correlations			.74		.82	6	.83		.89		.95

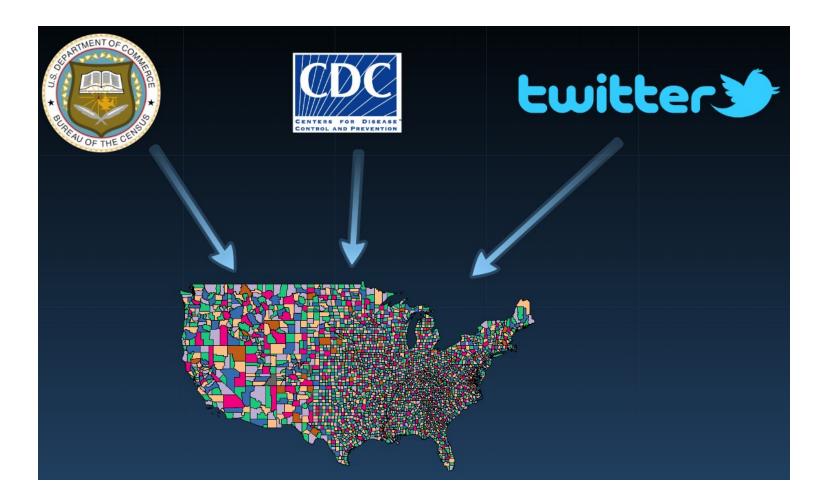
[©]Fit unrepresentative sample to representative sample results (i.e. implicitly maps unrepresentative sample to representative) [~]In the end we are validating against representative data.

Individual Traits in Facebook

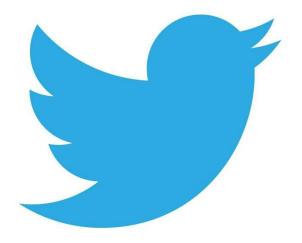
MyPersonality Dataset

- Facebook application to take "Big-5" personality survey.
- Approximately 75,000 users of the app:
 - shared their status updates for research
 - wrote at least 1,000 words
 - share their age and gender

Community Well-Being Through Twitter



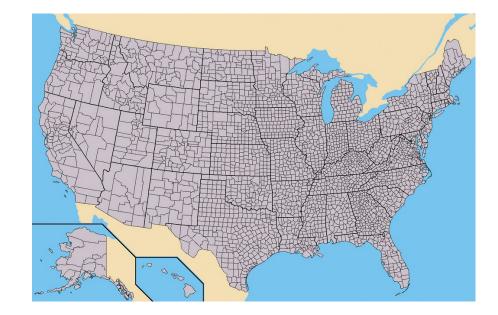
Community Well-Being through Twitter



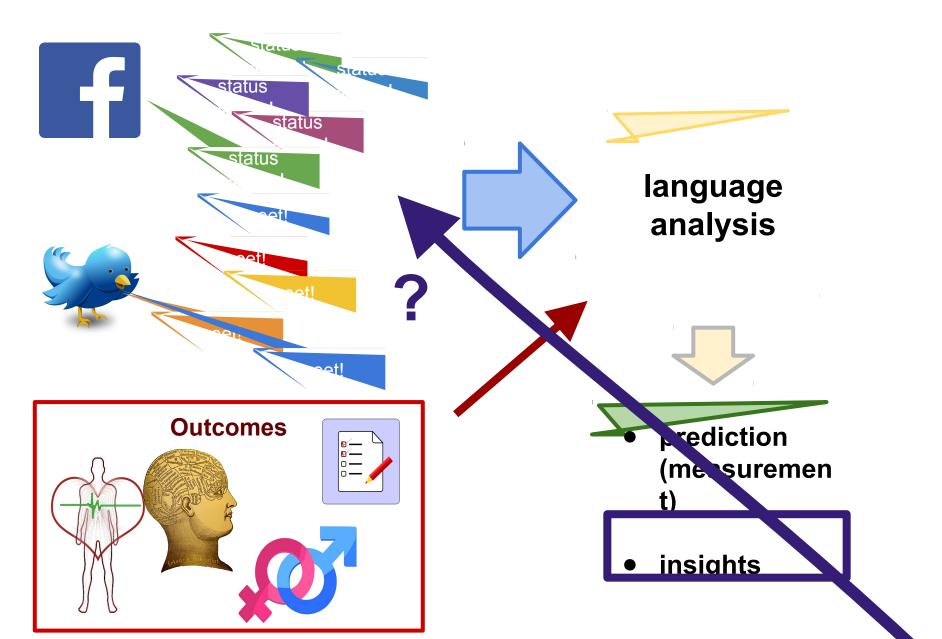
Twitter

- > 150 million active monthly users
- > 350 million messages a day

often list a location or geo-coordinates



You Are What You Tweet



Example JSON - Tweet

```
"coordinates": None,
 "created_at": "Wed Jan 29 22:58:50 +0000 2014";
 "favorite count": 19,
 "favorited": False,
                                           Chandler M. Bing
                                                              + Follow
 "geo": None,
                                           @chandlermbing
 "id": 428663556889145344,
                                       Wow, where did January go? Was I
                                       in Tulsa or Yemen? Or Vermont?
 "lang": "en",
                                        ♠ Reply t3 Retweet ★ Favorite ···· More
 "place": None,
                                       RETWEETS FAVORITES
                                        14
                                            19
 "retweet count": 14,
                                       2:58 PM - 29 Jan 2014
 "retweeted": False,
 "text": "Wow, where did January go? Was I in Tulsa
or Yemen? Or Vermont?",
```

- REST APIs
 - Twitter App building (e.g. smartphone apps)
 - Search API
- Streaming APIs
 - Firehose
 - public random sample
 - "user" and "site" streams

https://dev.twitter.com/docs

- 1 % of all public tweets
- real time
- useful for representative language sample
 - less than 40% of tweets are in English
 - can be useful for frequencies of terms looked at

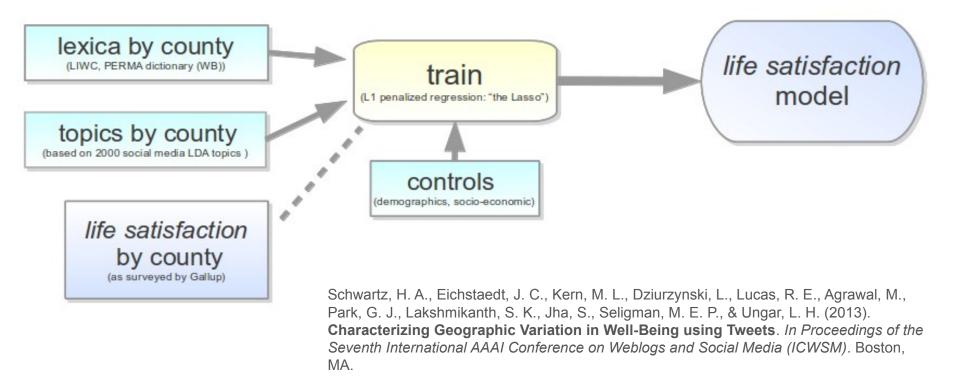
- Specific to what you're looking for
- same content as the web search <u>https://twitter.com/search?q=obama</u>
- parameters include
 - Recent vs Top tweets
 - Geolocalization
 - Language filter (Twitter's algorithm is "best effort")
 - time ranges (limited)
 - more:

https://dev.twitter.com/docs/api/1.1/get/search/tweets

Community Heart Disease through Twitter

Method: Prediction

- Lasso, L1 penalized, regression
- Controls:
 - *demographics:* age, gender, ethnicity
 - socio-economic status: income, education



- Specific to what you're looking for
- same content as the web search <u>https://twitter.com/search?q=obama</u>
- parameters include
 - Recent vs Top tweets
 - Geolocalization
 - Language filter (Twitter's algorithm is "best effort")
 - time ranges (limited)
 - more:

https://dev.twitter.com/docs/api/1.1/get/search/tweets

Twitter uses OAuth2 for authentication

- Not a "username, password" authentication
- Need a "Twitter App" (and a Twitter account)
 - Anyone can create a blank app
 - Go to <u>https://apps.twitter.com/app/new</u>
 - Generate API key, API secret, access token & access secret on this page:

https://apps.twitter.com/app/YOUR_APP_ID/keys

- text of the tweet
- unique Twitter id
- created date & time
- replies:
 - user id & tweet id of tweet replied to
- retweets:
 - Tweet JSON of the original tweet
- favorited & retweeted counts
- entities
 - expanded links, hashtags, media & user mentions
- user info:
 - unique Twitter id
 - screen name, handle, location, description
 - nb tweets, favourites, followers
 - profile picture & background information

Find a complete list of fields at: <u>https://dev.twitter.com/docs/platform-objects/tweets</u> & <u>https://dev.twitter.com/docs/platform-objects/users</u>

!! Some fields are optional !!

Example Tweet JSON: <u>https://gist.github.com/gnip/764239</u>

Limitations of Twitter API

Sample Stream:

- only 1 % of all tweets
- terms that aren't frequent enough might not even appear in your dataset

Search:

- 180 "queries" limit in every 15 minute window
- each search query can only contain 10 terms

- Graph API 000
- Third
 Original Place

 •
 Public Feed API

 •
 Feed API

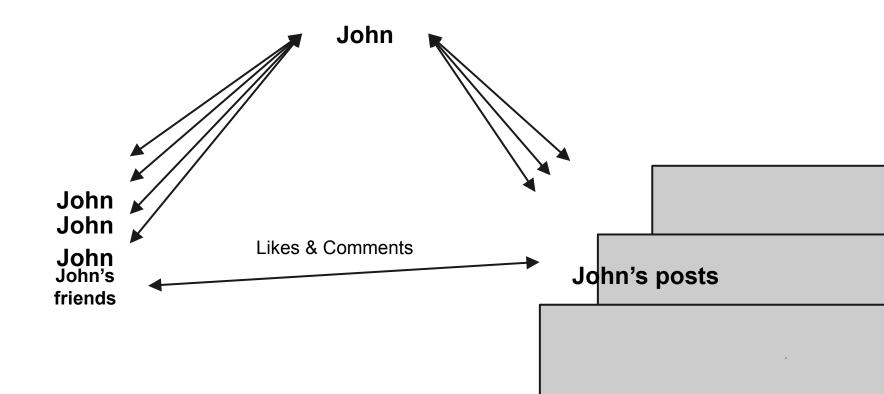
 •
 Feed API

 •
 Feed API

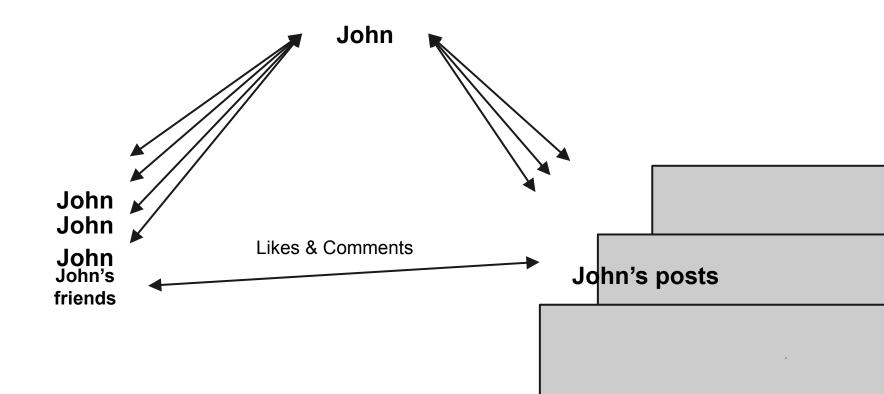
That's where the data is

- Third party APIs
 - **Public Feed API** Ο
 - **Keywords Insights API** Ο

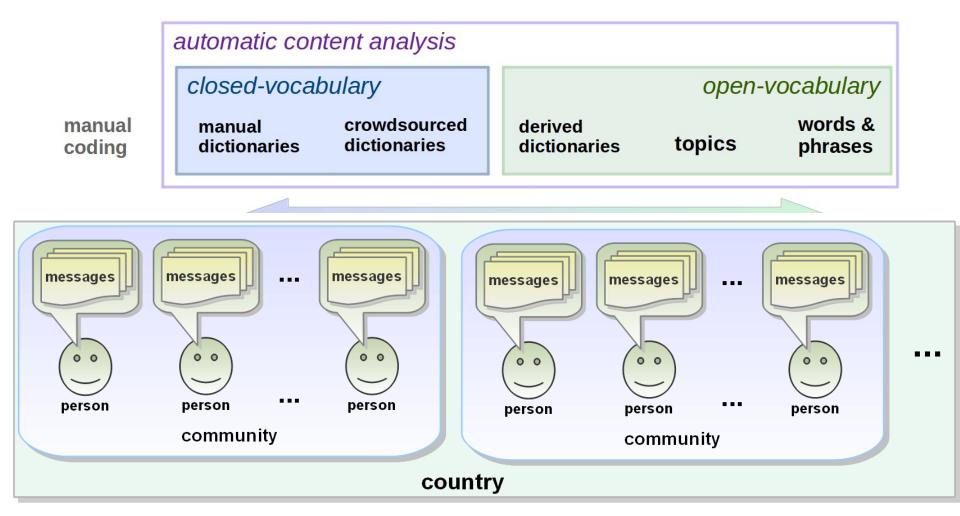
• Every data point is a node in a graph

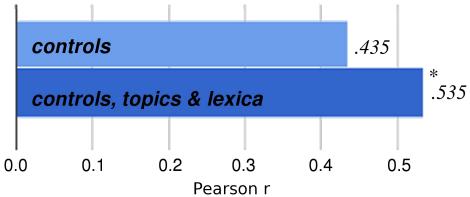


• Every data point is a node in a graph



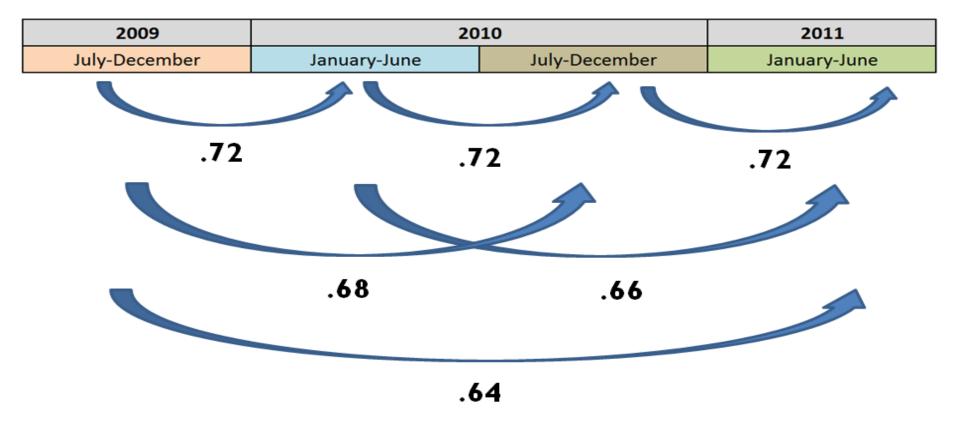
- API = Application Programming Interface
- Easier for huge amounts of data
- Twitter has multiple APIs
- So does Facebook
- How to use the Graph API to post/delete a status
- You might want to ask your programmer for help





Individual Traits in Facebook

Test-Retest Reliability

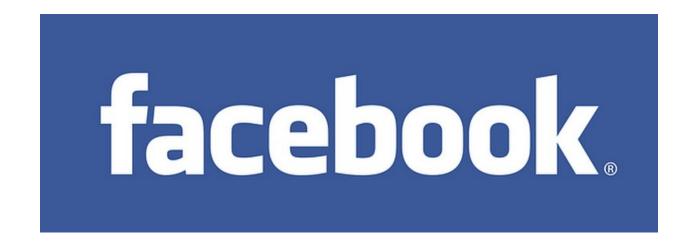


Extraversion

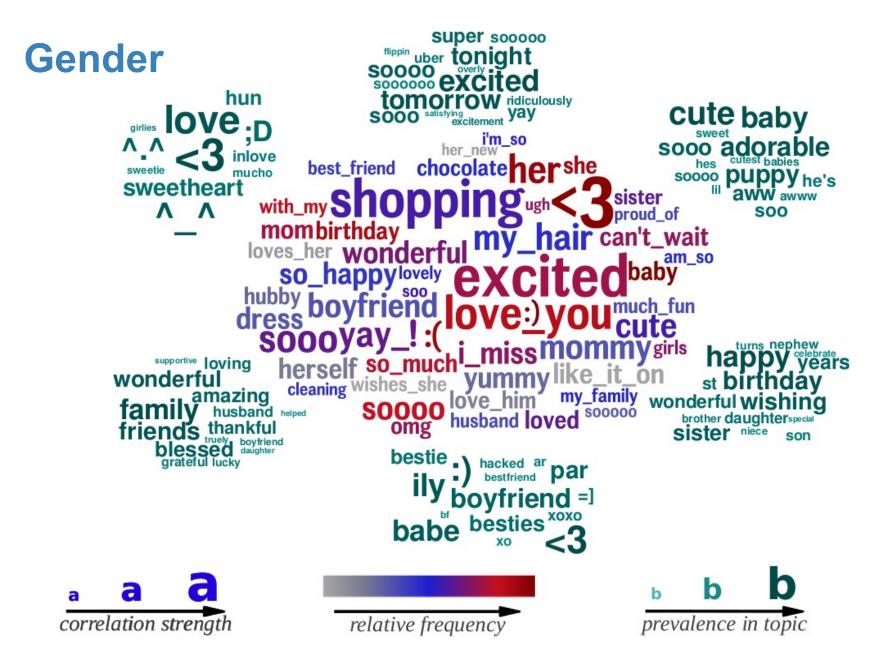
Individual Traits in Facebook

MyPersonality Dataset

- Facebook application to take "Big-5" personality survey.
- Approximately 75,000 users of the app:
 - shared their status updates for research
 - wrote at least 1,000 words
 - share their age and gender



Individual Traits in Facebook: Female



Individual Traits in Facebook: Male

